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Nonlinear effects in the torsional adjustment of interacting DNA

A. A. Kornyshev and A. Wynveen*
Department of Chemistry, Faculty of Physical Sciences, Imperial College, London SW7 2AZ, United Kingdom

~Received 10 November 2003; published 29 April 2004!

DNA molecules in solution, having negatively charged phosphates and countercations readsorbed on its
surface, possess a distinct charge separation motif to interact electrostatically. If their double-helical structure
were ideal, duplexes in parallel juxtaposition could choose azimuthal alignment providing attraction, or at least
a reduction of repulsion, between them. But duplexes are not perfect staircases and the distortions of their
helical structure correlate with their base pair texts. If the patterns of distortions on the opposing molecules are
uncorrelated, the mismatch will accumulate as a random walk and attraction vanishes. Based on this idea, a
model of recognition of homologous sequences has been proposed@A. A. Kornyshev and S. Leikin, Phys. Rev.
Lett. 86, 3666~2001!#. But DNA has torsional elasticity. How will this help to relax a mismatch between the
charge distributions on two nonhomologous DNA’s? In the same work, the solution of this problem has been
mapped onto a frustrated sine Gordon equation in a nonlocal random field~where the latter represents a pattern
of twist angle distortions on the opposing molecules!, but the results had been obtained in the limit of
torsionally rigid molecules. In the present paper, by solving this equation numerically, we find a strongly
nonlinear relaxation mechanism which utilizes static kink-soliton modes triggered by the ‘‘random field.’’ In
the range of parameters where the solitons do not emerge, we find good agreement with the results of a
variational study@A. G. Cherstvy, A. A. Kornyshev, and S. Leikin, J. Phys. Chem. B~to be published!#. We
reproduce the first-order transitions in the interaxial separation dependence, but detect also second-order or
weak first-order transitions for shorter duplexes. The recognition energy between two nonhomologous DNA
sequences is calculated as a function of interaxial separation and the length of juxtaposition. The soliton-caused
kinky length dependence is discussed in connection with plots of recombination frequency as a function of the
length of homology.

DOI: 10.1103/PhysRevE.69.041905 PACS number~s!: 87.15.Aa, 87.15.Kg
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I. INTRODUCTION

When two people meet in the forest they smile when
proaching each other to do so without fear, unless exte
circumstances impel them to converge. Two lovers will a
just to each other to reach the closest embrace, wherea
gilists keep their fists up to prevent an embrace. Likew
peaceful relations between countries require friendly dip
matic overtures, which are not necessary in times of war
the part of both parties.

The same rules apply to the world of macromolecules
colloids. If two objects that do not have a dominating attra
tive component in their interaction in their native state w
to approach each other, they need to ‘‘smile,’’ i.e., to defo
in a manner to become more attractive to each other. If t
are driven toward each other by osmotic stress, they will
caused to ‘‘smile’’ to reach a lower energy state as they n
each other.

The objects must be complementary when the attractio
already there without a ‘‘smile.’’ This is a rare case whi
results in spontaneous irreversible aggregation. In contra
‘‘smile’’ or a stronger reconstruction of noncomplementa
objects is required to provide a crossover from repulsion
attraction. A ‘‘smile’’ alone may not warrant attraction, b
‘‘love at first sight’’—a phenomenon in which there is a de
momentary phase-transition-like restructuring of t
objects—does.

*Electronic address: a.wynveen@imperial.ac.uk
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Three factors control these phenomena:~i! the intrinsic
incommensurability of the interacting objects,~ii ! the free
energy gain in their mutually adjusted forms, and~iii ! the
free energy cost of the deformation needed, determined
the flexibility of the interacting objects. If the free energ
gain prevails over the costs of deformation, attraction w
emerge. Depending on the importance of the first factor,
attraction may grow smoothly, a ‘‘simile’’, or occur sponta
neously, ‘‘love at first sight.’’ In most of the cases these
fects have a strong nonlinear character, and their descrip
lies at the frontier of nonlinear science. In this paper we w
explore them in the problem of interacting DNA.

A. DNA aggregation

DNA is a polyelectrolyte molecule. In solution it dissoc
ates leaving negative charges on phosphates and pos
counter charges either floating around the molecule or~par-
tially! readsorbed onto its surface. It is, therefore, a comm
point that electrostatics should play an important role
DNA condensation, in the structure of DNA mesophases
morphology, and in the properties of dense aggregates@1,2#.
It was not possible to rationalize many of these phenom
within the ‘‘primitive model’’ of a polyelectrolyte in which
each DNA molecule was considered as a homogeno
charged cylinder@3#. The situation changed dramatically a
ter it was shown that electrostatic interaction between D
duplexes crucially depends on surface charge patterns@4#.

Indeed, DNA in solution has a sophisticated charge dis
bution. The negative charges of phosphates follow the dou
helical symmetry of the molecule, whereas the readsor
©2004 The American Physical Society05-1
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cations reside in major/minor grooves or on the phosph
strings. Adsorption into the grooves causes distinct sep
tion of positive and negative helical charge motifs along
molecule. Two such distributions on juxtaposing ideal he
ces will attract each other under a favorable mutual a
muthal alignment of the molecules@4#. This effect gives rise
to the concept of the ‘‘electrostatic zipper motif for DN
aggregation’’@5#. This attraction will take place even if th
counterions are not localized in the grooves but are dis
dered on the surface. There still will be a charge separa
motif due to the double helical pattern of the phosphates,
the attraction will be weaker in this case.

Aggregation does not mean the total collapse of the m
ecules because there is always a short-range repulsion@4#.
This was found to be the ‘‘image’’ repulsion of the char
distribution on one molecule from the low dielectric consta
core of the other molecule@this effect is represented in Eq
~1! of the present paper bya0(R)]. For rigid ideal helices,
this energy term as a function ofR has twice as short o
decay length as the attractive term@4#, but it does not depend
on the azimuthal orientations of the molecules. At ev
shorter distances there will be an additional hard-wall-l
steric repulsion. If the charge on the phosphates is not f
compensated or is overcompensated by the readsorbed c
terions, there may be double-layer-screened electrostati
pulsion at long distances. This will take place, however, o
for sufficiently large net charges.'20–30% of the charge
on phosphates@4,5#. Below this, attraction will occur. Since
attraction depends on the mutual azimuthal orientations
the molecules, DNA assemblies reveal a rich phase beha
@6–9#.

B. DNA-DNA recognition

Basic equations describing this phenomenon were der
in Ref. @10#, and it was argued that the attractive interacti
may be responsible for a snap-shot electrostatic recogn
of homologous DNA sequences at a distance. The first
ploration of this hypothesis was based on the theory of
electrostatic interaction between DNA@4,5# which has been
modified to include the sequence-dependent twist betw
adjacent base pairs@10#. It was found that the interaction
between two DNA fragments of uncorrelated sequences
fers dramatically from the interaction between two homo
gous sequences. Qualitatively, this result may be expla
without complicated algebra, although a detailed theory
lows quantifying the main effects@10#.

Indeed, DNA is not a perfect staircase. Step angles
slightly distorted for each step, and the pattern of these
tortions correlates with the text of the sequence@11,12#. Two
rigid homologous duplexes in parallel juxtaposition will ha
almost identical patterns of distortions of the steps, and t
can be aligned in such a way that the motifs of positive a
negative charges will stay in register along the whole len
of the sequence. This causes attraction between the
quences which locks them in close juxtaposition, necess
for the subsequent recombination process. On the cont
two nonhomologous sequences have texts which are ran
with respect to each other. Their step distortions are un
04190
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lated. The quasihelical charge distributions on the juxtap
ing duplexes can be positioned in register over a section
certain length, but the register will be lost beyond this leng
for long enough duplexes. The attraction between them
therefore be much weaker or even turn into repulsion. T
dramatic difference in the electrostatic interaction betwe
homologous and nonhomologous DNA fragments allows
intact homologous sequences to recognize each other fro
distance.

The characteristic length over which two juxtaposing to
sionally rigid nonhomologous duplexes completely lose r
ister, referred to as the helical coherence length, was foun
be equal tolc5h/DV2 @10#, where h is the vertical rise
between base pairs andDV is the mean square fluctuation o
the twist angle. ForB-DNA h'3.4 Å, DV'0.07– 0.1 rad
@13–15# and thuslc'300– 700 Å. On length scales muc
larger thanlc the torsional mismatch accumulates accord
to the law of a random walk. As it was shown in Ref.@10#,
rigid random duplexes longer thanlc should always repe
each other.

The always positive difference of the interaction betwe
nonhomologous and between homologous duplexes of
same length was called ‘‘recognition energy.’’ It was found
be greater thankBT for sequences longer than 50 base pa
at DNA-DNA interaxial separations ofR530 Å @10#. At
closer interaxial separations the absolute value of the in
action energy increases nearly exponentially with dimini
ing R and so does the recognition energy. Two people rec
nize each other when they come closer, and the same ap
on the macromolecular scale. The absolute value of the
teraction energy, and consequently the recognition energ
larger the longer the sequence.

This kind of electrostatic ‘‘snapshot’’ recognition mech
nism may explain the enigmatic aspects of homologous
combination:~i! how genes responsible for the same functi
recognize each other and~ii ! why the frequency of recombi
nation events grows with DNA homology@16–21#. Shuffling
of homologous genes takes place between father and mo
DNA in sperm and ovocites before fertilization, or in th
damaged genes replacement in DNA repair. It is a cru
element of evolution and genetic diversity. Recombinat
errors may lead to diseases such as cancer, Alzheimer’s,
and contribute to the aging process.

In order to understand the kinetics of homologous reco
bination, one must know what is the rate determining sta
of it: the RecA-promoted recombination machinery in ho
day junctions@22# or a precursor process of the recognitio
of homologous genes on the juxtaposing unzipped D
@23,24#. Based on the former conjecture, a model with fe
fitting parameters has been proposed@25,26#. This model re-
fers, however, to the fine tuning stage of recognition and
the coarse snapshot tuning from a distance. The latter is n
rally explained by the electrostatic recognition of sequen
as a whole@10#. This suggests a means for selective scre
ing in a primary search@27# for homologous pairing in which
DNA need not unzip. Note that the only earlier known re
ognition mechanism based on the base-pair complement
of single strands@16# gives an opposite prediction: the re
ognition will be slower the longer the sequence. If the re
5-2
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ognition is rate determining, this would translate into long
recombination times for longer sequences that have n
been observed.

C. In vitro DNA aggregates

However, accepting this model we face a new problem
most of thein vitro experiments DNA duplexes are not h
mologous. How come they are still able to spontaneou
aggregate in the presence of DNA condensing counterio
A variational solution for this problem has been obtained
Ref. @28# that has incorporated torsional elasticity of the m
ecules.

Basic equations including torsional elasticity had be
presented already in Ref.@10#, but the detailed analysis ha
been presented under the assumption that the juxtapo
duplexes are torsionally rigid. There are experimental in
cations that DNA can torsionally relax as its structu
changes in dense aggregates subject to external condit
DNA overwinding from 10.5 base pairs per DNA helic
pitch in solutions@29,30# to nearly 10 base pairs per pitch
hydrated fibers@31# as well as theB-to-A DNA transition at
low humidity @32,33# have been recently explained by th
gain in the corresponding electrostatic interaction energy
ideal duplexes@34,35#.

D. Nonlinear phenomena

The main subject of the present article is the analysis
this problem over relevant length scales where the va
tional approach used in Ref.@28# is insufficient, i.e., to ex-
plore all the nonlinear aspects of the torsional adjustmen
formal terms, DNA has a finite torsional persistence len
lp5C/(kBT), whereC is the DNA torsional rigidity modu-
lus. In addition, interacting DNA can be characterized by
torsional adaptation lengthl t @28#, a quantity that reflects the
combined effect of torsional elasticity and intermolecular
teraction. Typical values ofl t lie in the wide range of 20–
700 Å @10#. For sequences longer thanl t the effects of tor-
sional elasticity cannot be ignored. The case of 2lc*l t has
been analyzed in Ref.@28# whereas the case ofL@l t.lc is
a primary suspect for more intricate nonlinear torsional
havior.

Torsional softness will help DNA aggregation but will, i
turn, diminish the recognition energy. Will torsional flexibi
ity completely wipe out the snapshot recognition mec
nism? That was not the conclusion of Ref.@28# where the
case of 2lc*l t has been considered. The recogniti
mechanism should certainly not be lost in the opposite c
of rigid molecules. Our task is, therefore, to understand h
the torsional softness relaxes nonhomology for any valueL,
l t , andlc .

Some of the new effects that we find below refer to m
ecules longer thanl t that in turn is longer thanlc . If we
keep in mind that typical values oflc may be as large as 70
Å, we should be aware that for such long molecules ot
modes of relaxation could be available, primarily associa
with DNA bending~whose persistence length is believed
be of the order of 500 Å! @36#. Our study is thus limited to an
imposed constraint that parallel juxtaposition is someh
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provided. In fact we know almost nothing about the tr
structure of juxtaposition in the precursor stages of homo
gous recombination. But in columnar aggregates, stabili
by osmotic stress and/or condensed counterions, this com
cation may be neglected.

DNA torsional rigidity may greatly depend on extern
conditions, such as the adsorbed cations, solvent, temp
ture, etc.@37–39#. Thus, if the recognition energy is strong
influenced by finite torsional rigidity, there could be effec
of external conditions on DNA-DNA recognition relevant
gene shuffling for genetic diversity and DNA repair.

II. PAIRWISE INTERACTIONS BETWEEN TWO DNA
MOLECULES

The total Landau free energy of two parallel DNA mo
eculesi andj in parallel juxtaposition consists of the electr
static and the torsional energy terms, the latter associ
with twist deformations of the individual helices about the
preferred sequence-dependent twist anglesV i(z) andV j (z).
This energy was shown to be a functional of the relat
local azimuthal orientationdf(z)5f i(z)2f j (z), wherez
is the axial coordinate@10,28#

E'E
0

L

dzFa0~R!2a1~R!cos@df~z!#1a2~R!cos@2df~z!#

1
C

4 S ddf~z!

dz
2

dV~z!

h D 2G . ~1!

HereL is the length of the molecules, thea coefficients are
electrostatic interaction parameters~for their detailed expres-
sions, see Refs.@10,28#! that depend on the interaxial sep
ration between the moleculesR and the pattern of the charg
distributions on them, andh is the helical rise per base pa
~'3.4 Å!. The torsional term depends on the torsional el
ticity modulusC and the difference in the preferential twi
angles of the individual molecules at a given axial positi
dV(z)5V i2V j . Again, the average twist angle for th
B-DNA is ^V&534° and the mean-squared sequen
dependent deviation from the average value isDV
54° – 6° @11–15#.

Minimizing this energy yields the Euler-Lagrange equ
tion for df(z) @10#

d2@df~z!#

dz2 2
1

l t
2 sin@df~z!#F12

4a2

a1
cos@df~z!#G

5
1

h

d@dV~z!#

dz
. ~2!

The torsional lengthl t5AC/2a1 depends on the ratio be
tween the elasticity modulus and an interaxial-separati
dependent interaction constant. Both are sensitive to the
vironment and counterion adsorption patterns. Thereforel t
depends on the solute, solvent, and temperature.

Note that the form of the energy functional and the resu
ing Euler equation with only one variabledf(z) can be de-
rived only when the torsional force constants are the sa
5-3
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for both molecules, otherwise we end up with two coup
nonlinear equations. Since we are going to consider inte
tions between different sequences, and we know that fo
constants can vary up to two times between different b
pair dimers@15#, we should consider the assumption of ide
tical torsional constants as a simplifying one. For long
quences, however, the differences may average out.

This equation resembles that of a time-independent s
Gordon equation, which appears in physical systems in
ferent contexts: from Josephson junctions to nonlinear p
dula ~kicked rotator dynamics! @40#. The right-hand side
~RHS! of the equation acts as an ‘‘external field’’ which h
dramatic effects on the solutions fordf(z), hereafter called
the ‘‘phase angle.’’

These solutions differ from those that may be found a
lytically for the homogeneous equation, i.e., whendV(z)
50. For infinitely long molecules the latter are drawn
Appendix A. They are of two types:z-independent solutions
and kink-soliton solutions. The solitons are excitations
the system spectrum, as they have higher energies
z-independent solutions.

In an ‘‘external field’’ consisting of a few defects, effec
of soliton pinning have been studied analytically in the pu
sine-Gordon case@41#. This may result in energetically fa
vorable kinklike solutions, or more precisely, solutions th
utilize the soliton mode of response to an external pertur
tion. However, for a nonhomologous pair of DNA molecule
the randomdV field is not simply a few defects, but rather
random field which is finite and varies over the entire ax
length of juxtaposition.

As in the sine-Gordon equation with defects in the cont
of Josephson junctions@40# matters are complicated by th
derivative of the ‘‘external field.’’ This means thatd V acts
nonlocally, as made more evident when rewriting Eq.~2!
in terms of the random field integral C(z)
5(1/h)*z0

z dz8dV(z8) and the shifted phase angle

df̃~z!5df~z!2C~z!,

d2@df̃~z!#

dz2 2
1

l t
2 sin@df̃~z!1C~z!#

3F12
4a2

a1
cos@df̃~z!1C~z!#G50. ~3!

In order to go beyond the limiting cases that can be trea
analytically, and also to consider strongly nonlinear effec
we solve Eq.~2! numerically and then calculate the corr
sponding ground-state energy of the system using Eq.~1!.

III. THE APPROACH AND NUMERICAL PROCEDURE

For sine-Gordon equations of this type, global spectra
pseudospectral methods@42# which tend to be more accurat
and efficient than local finite difference or finite eleme
methods are ideally suited~see, e.g., Refs.@43,44#!. How-
ever, instabilities may arise no matter what numerical te
niques are used and are highly dependent on the param
involved. Hence, convergence of correct solutions was o
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assured after studies of the sensitivity of solutions to ini
conditions, boundary conditions, and the range of the par
eter space under scrutiny.

Employing standard spectral methods, the solutions to
~2! are written as linear combinations of basis functions t
possess simple derivative forms. The expansion coefficie
are found by a rapidly converging procedure. Namely, th
basis functions, evaluated at a series of collocation po
~axial coordinates ideal for the basis functions being use!,
are substituted into a linearized form of the differential equ
tion. This yields a set of residual equations in which t
coefficients can be determined. Since the differential eq
tion is nonlinear, this step is iterated via a Newto
Kantorovich scheme@42# until convergence of the expansio
is achieved yielding an exact solution.

Solutions are considered unique~and exact! if identical
solutions are obtained when using a different basis func
expansion, employing expansions of different orders, or
tablishing boundary conditions by dissimilar means. To
flect the nonideality of the double helical staircase, the la
is modeled as steps each with a height of one helical
~'3.4 Å! but with a nonconstant twist angle that deviat
from the average twist angle by approximately 0.1 radia
@13–15#. At each rise, the difference of the preferred tw
angles between two nonhomologous duplexes is modele
a step with a Gaussian, randomly generated amplitude.
average value of these amplitudes isA^@V i(z)2V j (z)#2&
5A2DV2. Obviously, such a way of incorporating helic
nonideality is a strong simplification. Indeed, the vertical r
may fluctuate from step to step, and other angles, such a
and roll can also vary@11#. However, including these effect
would entail exceeding the accuracy of the continuum mo
on which Eq.~2! rests.

Similar to the analytical explorations of this equatio
where results for the energy are found first for a givendV(z)
and then are averaged over all its realizations, here, in e
simulation, we solve the equation for the phase angle
calculate the energy for a specific form ofdV(z). In the end,
we may average the results to obtain an ensemble avera
different realizations ofdV(z), yielding a least square fit to
the data with accompanying error bars.

Since the interaction is considered for finite-sized m
ecules, the boundary conditions must reflect the nature of
system. One can imagine three configurations:~i! the helices
could be clamped at their ends, only allowed to wrigg
about their middles;~ii ! they could be clamped only at on
end as if holding a snake by its tail with its head free to tw
about; and finally,~iii ! the entire length of the helices may b
able to adjust their twist angles, subject to torsional co
straints, to achieve the lowest total energy. Unless otherw
stated, the last configuration is considered as it yields
lowest energy state.

In reality, for extremely long chains, it is difficult to sa
how their extensions—beyond the region where the t
macromolecules are within interaction distances and
proximately parallel juxtaposition—influence the sections
the chains that are interacting. For numerical reasons, h
ever, boundaries had to be maintained at the ends, to pre
instabilities and yield convergent solutions, and were
5-4
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NONLINEAR EFFECTS IN THE TORSIONAL . . . PHYSICAL REVIEW E 69, 041905 ~2004!
justed to obtain the most energetically favorable state.
In this regard, we will hereafter neglect thermal fluctu

tions and only consider the lowest energy solutions. Ther
fluctuations may be quite important especially close to
second-order phase transition points seen in this model,
they will be treated elsewhere.

IV. COMPARISON OF NUMERICAL AND ASYMPTOTIC
RESULTS

Since analytical expressions have been obtained for
tain limiting cases of Eq.~2! @10,28#, we began by testing the
numerical simulations against the results of the analyt
studies. We first summarize them.

For identical sequences, the RHS of Eq.~2! vanishes
since the molecules share the same preferred twist angle
tern @dV(z)5V i(z)2V j (z)50#. In the ground state the in
tegrand of Eq.~1! does not depned onz, and the energy for
this case, as shown in Fig. 1, has a single minimum ab
some interaxial separation, termed the ‘‘frustration poin
@4#, but two minima evolve below this point. This spontan
ous broken symmetry for the energy leads to two sepa
solutions, which depend on the relative strengths of the e
trostatic coefficients@4#, for the optimal azimuthal angle be
tween helices

df05H 6arccos~a1/4a2!, a1<4a2 ~R,R* !,

0, a1>4a2 ~R.R* !.
~4!

Here R* , found from the condition that a1(R* )
54a2(R* ), denotes the frustration point. The ener
minima can then easily be found by substituting this optim
angle into Eq.~1!

E5H S a02
a1

2

8a2
2a2DL, R,R* ,

~a02a11a2!L, R.R* .

~5!

For rigid molecules, or short chains, whenL!lc , l t , the
phase angledf(z) follows the accumulated random pha
C(z). Substituting this into Eq.~1! and averaging over real
izations of the Gaussian random field yields the interact
energy for rigid uncorrelated sequences obtained in R
@10#. For very rigid and/or short sequences this recognit
energy was found to obey the rule@28#

DE'a
L2

2lc
, ~6!

where

a5H 4a22a1
2/4a2 , R,R* ,

a124a2 , R.R* .
~7!

If the duplexes are torsionally soft, i.e.,L, lc@l t , they
relax practically after every torsional mismatch, keeping
phase close to its optimal value. In this limit, then, the trig
nometric functions in Eq.~2! can be expanded aboutdf0
yielding an exactly solvable linear equation indf @28#.
04190
-
al
e
ut

r-

l

at-

e
’’
-
te
c-

l

n
f.
n

e
-

Again, this solution can be substituted into Eq.~1! to find the
energy, and hence, to find the corresponding recognition
ergy. In this case, it grows linearly with molecular leng
@28#

DE'a
l t

2lc
L. ~8!

This makes perfect sense since the mismatch in the t
angles is not accumulated but relaxed at each step. He

FIG. 1. The frustration of the electrostatic potential betwe
DNA. The electrostatic interaction energy per base pair betw
identical DNA double helices in parallel juxtaposition is shown a
function of the relative azimuthal angle and their interaxial sepa
tion ~a!. At interaxial separations below'27 Å ~for the chosen set
of parameters! the energy possesses two degenerate mini
whereas there is only one minimum for larger separations. Thi
seen more easily in a contour plot of the energy~b! where the
repulsivea0 term is excluded from Eq.~1!, i.e., only the terms
dependent on azimuthal orientation are shown.~In both plots,
darker shades represent lower energies.! The electrostatic coeffi-
cients, which vary with the interaxial separation, used for th
plots are for helices with 90% counterion neutralization and a 30
70% distribution of these ions between the minor and ma
grooves@10#. The same parameters are used in Figs. 7–10 of
paper.
5-5
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A. A. KORNYSHEV AND A. WYNVEEN PHYSICAL REVIEW E 69, 041905 ~2004!
the cost of torsional deformation energy yields an ene
difference that is proportional to length.

To check if the numerical calculation of Eq.~2! sub-
scribed to the analytic forms,~6! and~8!, a series of different
random field simulations were studied, yielding solutions
the phase angle. This was carried out first at interaxial se
rations above frustrationR.R* . ~The effects of frustration
are treated in a section to follow.! The difference in energy o
this nonhomologous system, found from Eq.~1!, and that of
identical helices was then obtained to find the recognit
energy. In this case, as with the analytical form~6!, the he-
lices were assumed to be fixed at one end at the angle
mal for identical helices. The random field fluctuation w
defined asDV50.1 radians so that the coherence length w
about 100 base pairs long.

The recognition energies obtained as the average
twenty different simulations are shown in Fig. 2. Again, on
the lowest energy configurations were considered and w
found via a global search over the ‘‘free’’ boundary, to elim
nate any local minima, and then honing in on the low
energy states. For shorter molecules, the recognition en
is approximately quadratic in length but becomes linear
increasingly longer molecules, exactly as advised by
theory.

V. NONLINEAR EFFECTS

Beyond the asymptotic laws, the numerical studies
check the variational results of Ref.@28# for l t&lc, where
such nonlinear effects as a first order transition have b

FIG. 2. Recognition energy as a function of DNA length av
aged over 20 different simulations with their appropriate stand
deviations. The solid line shows the quadratic relation for sh
molecules, Eq.~6!, and the dashed line shows the linear relations
for long, flexible molecules, Eq.~8!. For this set of numerical ex
perimentsl t5lc , where the coherence length is 100 base pa
The electrostatic coefficients@5,10,28# for this plot area051.2
31028 ergs/cm, a157.731028 ergs/cm, and a251.2
31028 ergs/cm. These values correspond to an interaxial sep
tion between DNA of 30 Å.
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found, and treat the regimeL@l t@lc , where conditions are
ripe for kink solitons. Here, the random walk accumulati
yields large values of the phase angle which cannot rela
a linear fashion.

Although kink-soliton solutions are energetically less f
vorable whendV(z)50 ~Appendix A!, incorporation of the
random field admits the possibility that such solutions m
yield lower energy configurations than those which simp
follow the random field~torsionally rigid molecules! or those
that simply relax the effects ofd V at every step~torsionally
soft molecules!. In order to explore how solitonic effect
may be turned on by a particular sequence, individual sim
lations with specific forms ofd V, mirroring experiments of
interacting pairs with particular sequences, are also stud
in addition to those averaged over different realizations
dV.

A. Large fixed interaxial separations

We first investigate the effect of specificdV(z) profiles
for a simpler case, when molecules are farther from e
other than the frustration pointR* @of Eq. ~4!#. The real
experiments testing the length dependence of recombina
generally have used segments of different lengths of a s
cific gene@17#. We simulate this by using longer and long
duplexes that incorporate the set of twist angles of
shorter ones. Namely, for a specific numerical simulation
400 base pair sequence will have the same form of the
dom field over its first 300 base pairs as that for the sho
300 base pair sequence. Also, since the lowest energy s
tions are desired, the boundary values of phase angle a
ther end are allowed to vary.

The phase angle profiles along with the recognition
ergy for a series of lengths, akin to that of Fig. 2, are d
grammed in Figs. 3–5 for a few random field generations.
evident in these figures, the recognition energy for spec
profiles of the random field is no longer smooth.

At large interaxial separations, the optimal angle for mi
mization of the electrostatic interaction energy is 2np
~wheren50,61,62,...). If there is enough accumulation o
the mismatch in the preferential twist angle difference,
helices may find it energetically favorable to deform in su
a way that the phase angle jumps from one electrostatic
ergy minimum to another. These effects will only be notic
able if the molecules are quite long since the width of a k
is approximatelyl t .

Figure 3~b! shows the phase angle for three differe
lengths. For the two shorter molecules, the random walk
sults in a kink forming near the right end of the molecule
that torsional energy is minimized. But as the molecule
made longer, this kink vanishes to minimize the electrosta
energy@45#. This is also apparent in the recognition energ
Fig. 3~a!. It increases at the lengths at which this kink form
but then levels off when the molecules are long enough
accommodate the kink.

Similar effects are also observed in Fig. 4. Here, sho
molecules have lowered their electrostatic energies by c
tering themselves about the optimal angle of ze

-
d
rt
p

.

a-
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NONLINEAR EFFECTS IN THE TORSIONAL . . . PHYSICAL REVIEW E 69, 041905 ~2004!
degrees. But for longer molecules the interplay between e
trostatic and torsional forces results in the phase angle s
pling the zero and 2p electrostatic energy minima. Unlik
the previous example, this change of the phase angle
figuration is not as apparent in the recognition energy p
Fig. 4~a!. The increase of the recognition energy slightly d
minishes when going from 400 to 500 base pairs as the k
turns on, which by no means could be inferred from a p
ticularly ‘‘favorable’’ realization of the random field.

Figures 3~a! and 4~a! demonstrate similar behavior of th
recognition energy although the phase angle patterns are
ferent. This is due to the flexibility in these systems: in t
case shown in Fig. 3 there is a gain in electrostatic ene
and loss in torsional energy, whereas Fig. 4 correspond
the opposite situation, yet the result is almost the same.

However, there are cases for specific forms of the rand
field in which the recognition energy displays a large dev
tion from a smoothly increasing curve that is not kink relat
as shown in Fig. 5. Here the recognition energy abrup
jumps and then levels off for molecules of lengths near 4
base pairs. This can be attributed to anomalously la

FIG. 3. The effect of a particulardV(z) set; the relaxed kinks
The recognition energy~a! is plotted as a function of molecula
length with the corresponding phase angles shown for 400, 500,
600 base pair long duplexes~b! for a particular twist angle distor
tion pattern. Here, relaxation of a kink is seen for longer molecu
In this simulationl t55lc . For these testslc is artificially set at
approximately 50 base pairs, although its natural value is cons
ably larger@10#. The values of the electrostatic coefficients area0

55.831029 ergs/cm, a155.131029 ergs/cm, and a252.43
310210 ergs/cm, which corresponds to an interaxial distance of
Å and the counterion distribution given in Fig. 1.
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sequence-specific deviations in the random field. This is
parent in the solutions for the phase for this particular sim
lation shown in Fig. 5~b!. This effect is not a prevailing
factor in Figs. 3~b! and 4~b!, where the offset of the phas
angle plots for different lengths was unnecessary.

The above examples, nonetheless, illustrate that kink-
deformations of the molecules, which are inherent to Eq.~2!,
yield the most energetically favorable states.

Finally there is a special case of a nonrandom fie
namely, dV(z)5h5const, which is interesting from a
physical point of view, because in this case the probl
maps exactly on the Frenkel-Kontorova model@46#. Further-
more this case shows a linear accumulation of misma
which is stronger than the average square-root accumula
for a Gaussian random walk. Biologically this is exotic if n
irrelevant: this would be the case for (AT)(AT)(AT)¯ and
(GC)(GC)(GC)¯ base pair sequences, although this co
possibly be studied in specialin vitro experiments. The re-
sults for this case are shown in Appendix B@47#.

B. Varying the interaxial separation between molecules

The variational studies of Ref.@28# demonstrated nove
effects as the molecules were approaching each ot
Namely, a discontinuity in the optimal phase angle was d

nd

s.

r-

5

FIG. 4. Nonrelaxed kinks. The same is plotted here as in Fig
for another simulation, i.e., another realization ofdV, for the same
values of the electrostatic parameters. It shows that similar cha
ter of the recognition energy curve can be obtained for a differ
phase angle behavior. In this case, kink formation in the lon
molecule is more energetically favorable for the system: the kin
not relaxed.
5-7
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A. A. KORNYSHEV AND A. WYNVEEN PHYSICAL REVIEW E 69, 041905 ~2004!
covered for interacting nonhomologous sequences below
frustration point. This first-order transition results from t
removal of the spontaneous symmetry break of the opti
phase angle at the frustration pointR* . For identical helices
this transition is second order, but this is no longer true wh
the random field is involved.

With decreasing interaxial distance between the m
ecules, the electrostatic forces begin to dominate the
sional forces, thus deforming the molecules. The electros
coefficients of Eq.~1! exponentially increase as the interax
separation decreases. As the molecules approach each
the effective torsional lengthl t decreases. Torsional defo
mations permit a better alignment of negatively charg
strands and positively charged grooves of opposing m
ecules, reducing the electrostatic energy, but since they
cost energy, the electrostatic ‘‘mismatch’’ will never be t
tally relaxed. Therefore, the interaction energies for fin
nonhomologous DNA are still greater than that of identi
molecules, the recognition energy being larger for lon
molecules.

Figure 6 shows the interaction energy as a function
interaxial separation for identical helices and an average

FIG. 5. ‘‘Response to a biased walk.’’ Again, the same is plot
here as in Figs. 3 and 4 but for a realization ofd V which exhibits
systematic deviations in one direction over a significant section
the juxtaposition length. The profile ofd V is shown as the solid
line in the phase angle graph. The large step in the recogn
energy arises from anomalously large systematic deviations of
random field rather than due to the effect of kinks. This is se
going from a 300 base pair sequence~which is offset by 2p for
clarification! to a 400 base pair sequence.
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a set of nonhomologous sequences with different forms
the random field. The diffference in the energies at th
minima for the whole molecules will be greater thankBT,
and therefore, identical molecules can still be distinguish
from nonhomologous molecules.

At separations below the frustration point, if the mo
ecules are long enough or the randomd V term tends to
‘‘walk’’ preferentially in one direction, both the electrostati
and torsional forces can be relaxed by a small kink betw
the1/2 optimal angles of Eq.~4!. This is apparent in Fig. 7
where the phase angle at a separation above the trans
jumps from one optimal angle to its negative. As the int
axial separation decreases, however, the electrostatic f
dominates the torsional forces so that the phase angle
follows one of these optimal angles, also shown in Fig. 7

This first-order transition is also apparent in the value
the phase angle averaged over the length of juxtaposition
in deviations about its mean value, Figs. 8~a! and 8~b!. Be-
low but close to the frustration point, the torsional forces a
still relatively strong, and so it may be advantageous for
phase difference to sample both electrostatic energy min
at the1/2 optimal angles via a small kink. This results in
phase angle average near zero but with large fluctuat
about this average.

If the molecules are pushed towards each other by
external force~osmotic stress!, the electrostatic forces be
come stronger and the minima in the frustrated poten
grows deeper. The small kinks then become energetic
less favorable. Essentially, the helices ‘‘melt,’’ or are able
twist to the point where nearly perfect alignment about
optimal angle occurs. The deviations about the aver
therefore are reduced as seen in Fig. 8~b!.

This first-order transition vanishes for shorter helice
however. Figures 9~a! and 9~b! show the mean value of th
phase difference and fluctuations about this average, res
tively, for molecules of different lengths. This makes perfe

d

f

n
he
n

FIG. 6. Interaction energy: the effect of torsional relaxation.~T
for dimensionless energy units is 300 K.! The curves are plotted fo
~dotted line! identical and~solid line! nonhomologous sequence
with 210 base pairs using the same parameters as those used i
1 ~see Ref.@28#!. The nonhomologous curve is a least squares po
nomial fit to five simulations with differentd V profiles. The tor-
sional constantC53.0310219 ergs cm here and for Figs. 7–10.
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NONLINEAR EFFECTS IN THE TORSIONAL . . . PHYSICAL REVIEW E 69, 041905 ~2004!
sense when one considers the accumulation of the ran
walk of d V. For longer sequences, there will usually
enough accumulation to trigger a kink between the posi
and negative optimal angles, as shown in Figs. 10~a! and
10~b!. In contrast, for shorter sequences, there is not eno
accumulation to favor a small kink, Fig. 10~c!.

VI. DISCUSSION

In this work, we have explored regimes and describ
nonlinear effects which were beyond the reach of the ana
cal study@10,28# presented previously. Since the credibili
of numerical solution of nonlinear equations with bifurcati
options may always be questioned, comparisons between
numerical results and known solutions have been made.
numerical studies demonstrated consistency with the ana
cal, asymptotic results and approximate variational appro
which is a good sign. Together with many repeated simu
tions, began at different initial points, this suggests that
can trust the results in the ‘‘terra incognita’’ region that w
inaccessible so far.

We have studied the energy ofrecognitionof homologous
and nonhomologous pairs of DNA duplexes. The recognit
energy between torsionally flexible longer helices with fin
rigidity increases linearly with length, but for shorter mo
ecules, this recognition energy decreases faster. This for
the recognition energy suggests that longer helices can
tinguish between identical helices and helices with differ

FIG. 7. Passing through a transition. The phase angle profile
a sample simulation~specific random realization ofd V! showing
what is happening when the interaxial separation passes throug
transition. The solid line corresponds to a phase angle profile a
interaxial separation below the transition~'22–23 Å!. The dotted
profile corresponds to a separation above the transition but
within the region of frustration, showing that the phase angle
shared via a kink between the two optimal angles. The horizo
dashed lines depict the optimal angles for identical helices, Eq.~4!,
below frustration at this same interaxial separation. This configu
tion reduces both the electrostatic energy and the torsional ener
this separation through the formation of a kink. A kink of this si
would not likely be thermally activated in the absence of the r
dom d V field: from Appendix A, its energy would be roughl
5kBT.
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base pair sequences even when the helices are quite flex
This corroborates the result of Ref.@28#.

The numerical analysis also demonstrated that the m
energetically favorable solutions may possess kink-l
forms at large interaxial distances. These may manifest th
selves in the recognition energies, but may not be discern
from consequences of the large fluctuations in the prefe
twist angle differences. Such nonlinear effects are inheren
DNA @48–51#, but this is the first treatment of those arisin
from DNA-DNA interactions before they unzip. It make
little sense to speculate about the possible ‘‘biological imp
cations’’ of these soliton-like kinks, at the stage of compu
tional explorations of their existence. Nevertheless, em
gence of such torsional deformations is an interest
consequence of this model.

At interaxial separations below the point of frustratio
smaller kinks between the positive and negative optim
angles~close to those that minimize the interaction energy
identical helices! may emerge. They are likely candidates
accompany homologous recombination. This possibility m
in addition give rise to new interesting phenomena.

Indeed, variational studies@28# have revealed that ther
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FIG. 8. First-order transition. The mean value of the phase an

over the length of the DNA~a! and the deviation about this averag
~b! are plotted as functions of the interaxial separation between
DNA. The solid line is for identical DNA, whereas the points co
respond to a specific numerical simulation for nonhomologous
quences. As seen in these plots, a first-order transition is obse
to occur somewhere between 22 and 23 Å for this particular sim
lation.
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A. A. KORNYSHEV AND A. WYNVEEN PHYSICAL REVIEW E 69, 041905 ~2004!
exists a first-order transition in the mean value of the ph
angle when the duplexes approach each other. Nume
studies of this report~Figs. 8–10! have shown that smal
kinks easily form above this transition, but at the transitio
the helices ‘‘snap’’ such that the kink is removed. Might th
be expressed in homologous recombination? Certai
claims of a direct correlation between the recombination
quency and the recognition energy curves should be ta
with great care, if made at all. Nevertheless, it is curious t
the switch from the first-order transition to second order
curs roughly at base pair lengths at which recombinat
frequencies drop abruptly, as seen in Fig. 11 which treats
data of Ref.@17#. Furthermore, for the set of parameters ch
sen for this exploration, the mentioned transition occurs
interaxial separations near the interaction energy minim
@Eq. ~1!#, a comfortable position for a recognition stage.

For shorter molecules on the order of the torsional leng
there would be no ‘‘kink mechanism’’ to influence this stag
As observed in experiments~see Fig. 11! @17#, extremely
slow recombination, if any at all, occurs for shorter stran
The ‘‘minimal effective processing segment’’@52# corre-
sponds to strand lengths where we observe the switch
tween the two types of transitions.

FIG. 9. Disappearance of first-order transition for short dup
pairs. The mean phase angle~a! and deviation from this average~b!
are given for three different lengths. Note, the first-order transit
is no longer seen for the shortest pair—there is not enough a
mulation of the preferential twist angle difference nor is the m
ecule long enough to cause a small kink. This trend can be obse
in Fig. 10 as well.
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VII. CONCLUDING REMARKS

In this paper, we have presented numerical studies d
onstrating the existence of strong nonlinear effects in
interaction of two DNA duplexes. These nonlineariti

x
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FIG. 10. Phase angle profiles for sequences of different leng
For the 110 base pair duplexes~a!, a first-order transition occurs a
an interaxial separation between 24 and 25 Å. At a separation o
Å, the phase angle is shared between the positive and neg
optimal angles~shown as horizontal solid lines!, but at closer sepa-
rations below the transition, the phase angle centers around
one of these optimal angles~shown as a horizontal dotted line!. This
is likewise seen in~b! for 50 base pair duplexes. At some point, it
not long or flexible enough to be shared between the optimal ang
In ~c!, a 20 base pair fragment cannot be shared between the1/2
optimal angles: it ‘‘has no room’’ to accommodate a small kink a
simply follows one of the optimal angles~shown as horizontal
lines!. Thus the transition returns to second order occurring v
close to the point of frustration of the interaction potential for ide
tical helices.
5-10
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NONLINEAR EFFECTS IN THE TORSIONAL . . . PHYSICAL REVIEW E 69, 041905 ~2004!
manifest themselves in the considerable kink-like twist
formations caused by interaction of nonhomologous
plexes. These, in turn, may be reflected in homologous
combination as it pertains to primary recognition betwe
homologous DNA pairs. Furthermore, the dramatic structu
heterogeneities associated with the torsional kinks also
be important for interactions between DNA and prote
@53,54#.

We are currently applying similar numerical techniques
assemblies of duplexes where more tractable experim
probing the signatures of nonlinearity may be performed
complete investigation of these effects, including their th
modynamic properties, may engender a variety of con
quences for many processes involving DNA and its packi

The present approach was based on a continuum app
mation where one torsional rigidity modulus was attribut
to the whole molecule. Variation in the base pair text can
principle, create a situation where there exist large diff
ences of the torsional forces for different sections of the m
ecule. Such a situation will require a special treatment. P
liminary investigations of a more discrete model, in whi
such effects may be incorporated, have already demonstr
consistency with the continuum ones.

Having studied the effects of torsional deformations,
did not consider any additional charge restructuring in
pattern of adsorbed counterions which may accompany
sional adjustment. Such effects have been studied separ
for torsionally rigid molecules@55#. Considering two pro-
cesses simultaneously would be more appropriate in a f
atomistic approach of molecular dynamics which is also
derway.

Further analytical studies are presently underway to
veal if there are any general laws in recognition and torsio
e
k

e
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adjustment. Also, some experiments will soon be underta
so that certain predictions of this model may be tested be
further speculation about the possible biological implicatio
of ‘‘love at first sight’’ between helical macromolecules.
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APPENDIX A: THE SOLUTION OF THE HOMOGENOUS
EULER EQUATION

For infinitely long molecules with boundary conditions
zero phase angle derivatives at6`, the solutions of Eq.~2!
can be compactly written in terms of the parameterg
52a2 /a1 .

~1! z-independent solutions:

df5H 6arccosS 1

2g D , g.1/2,

0, g,1/2.

~A1!

~2! Kink-soliton-like solutions:
df~z!5

¦

62 arctanHA2g21

2g11
tanhFz2z0

2l t
A4g221

2g G J , g>1/2,

arccosH sinh2FA122g
z2z0

l t
G2~122g!

sinh2FA122g
z2z0

l t
G1~122g!

J , 6~z2z0!,0, g<1/2,

2p2arccosH sinh2FA122g
z2z0

l t
G2~122g!

sinh2FA122g
z2z0

l t
G1~122g!

J , 6~z2z0!.0, g<1/2.

~A2!
e
e-

ven,
In the particular case ofg50 these are, correspondingly, th
trivial solutiondf50 and the well known sine-Gordon kin
df54 arctan@exp$6(z2z0)/lt%#.

The free energy needed to excite a soliton~in the absence
of the random field! is obtained by substitution of thes
solutions into Eq.~2!. The energies for the solitons—th
‘‘small’’ one, at g.1/2, i.e., existing at short distances b
tween the molecules, and the ‘‘large’’ one, atg,1/2, i.e.,
existing at long distances between the molecules—are gi
respectively, by
5-11
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A. A. KORNYSHEV AND A. WYNVEEN PHYSICAL REVIEW E 69, 041905 ~2004!
E* 5ACa1f ~2g!,

f ~x!55 A2xFA12
1

x2 2
arccos~1/x!

x G , x.1,

2&FA12x1
arcsinAx

Ax
G , x,1.

~A3!

The lower line~large soliton! corresponds to a torsional ro
tation from 0 azimuthal angle to an azimuthal angle of 2p,
whereas the upper line~small soliton! corresponds to a rota
tion between6arccos(1/2g). In the region of existence o
small solitons there is also a higher-order excitation, a ro
tion between6arccos(1/2g) and 2p7arccos(1/2g), whose
energy is given by

E** 5ACa1F~2g!,

F~x!5A2xFA12
1

x21
~p/2!1arcsin~1/x!

x G . ~A4!

At g51/2, E** merges with thex,1 branch ofE* . The
energies for these different kinks are compared in Fig. 12
shows that the large soliton kinks are large energy excitat
of the system which would not likely be thermally activat
over this interaxial separation range. However, small solit
have energies close to or even less thankBT ~especially near
the frustration point! and therefore must be considered viab
phase angle solutions at finite temperatures.

APPENDIX B: FRENKEL-KONTOROVA LIMIT: dVÄconst

Whend V is constant rather than random, Eq.~1! exclud-
ing the second cosine term has the energy form of the
mous Frenkel-Kontorova model@46#. The FK model was

FIG. 11. Frequency of recombination as a function of length
homologous insulin DNA fragments reproduced from Ref.@17#.
Each experimental point represents a single determination o
combination frequency from separate recombination experime
Straight line fits were made for lengths from 20 to 74 base p
~solid line! and for lengths from 74 to 313 base pairs~dotted line!.
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originally suggested to describe a one-dimensional string
atoms, treated as a harmonic chain of a certain periodic
adsorbed onto a substrate of another periodicity. The res
ing structure of the chain depends entirely on the competi
between the parameters that characterize the strength o
traction to the substrate, elasticity of the chain springs,
the ratio of the equilibrium period of the free chain to th
period of the substrate potential. If the attraction is stro
and the chain is soft it will adjust to the periodicity of th
substrate. If the chain is rigid and the periods are incomm
surate, the chain will be in the so-called floating phase,
commensurate with the substrate. In intermediate cases t
is a complicated phase diagram on the plane of parame
characterizing the ratio of the strength of the potential to
rigidity of the springs and the ratio of the periodicity of th
springs to the substrate period. The solutions will contain
periodicity domains separated by the defect region
domain walls—which are narrow if the interaction is stro
or wide if it is weak. This model appears to be important
different areas of physics, viz. the theory of dislocation
commensurate-incommensurate phase transitions, dom
walls in magnetically ordered structures, etc. Solutions
this model are well studied.

We can apply a similar analysis to the model of intera
ing DNA if we assume that the preferred twist angles b
tween DNA duplexes are offset by the same amountdV
5h at each base pair step. This leads to a phase accum
tion termC(z)5hz/h, that simply increases linearly alon
the juxtaposition length. For perfectly rigid duplexes whe
the torsional force constant is infinite, the phase angle
lows this accumulation@see Fig. 13~a!#. This case, in terms
of the FK model, corresponds to perfect incommensurabi
where there is no correlation between the periodicity
sponse of the phase, which is locked in ath, and the 2p
periodicity of the electrostatic interaction potential. For e
tremely soft molecules, i.e., when the torsional force co
stantC is quite small, the phase angle solution is almost z
everywhere corresponding to nearly perfect commensura

f

e-
ts.
s

FIG. 12. The large and small kink energies for the free soli
solutions, Eqs.~A1! and~A2!, as a function of interaxial separatio
between DNA molecules. The same electrostatic and torsional
rameters used in Figs. 6–10 were also used here to generate
energies. Note that the energy of the small kink decays quickly
zero near the frustration point, which occurs at approximately 27
The energy of the large kink remains quite large over this en
interaxial separation range.
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NONLINEAR EFFECTS IN THE TORSIONAL . . . PHYSICAL REVIEW E 69, 041905 ~2004!
ity. At intermediate values ofC, soliton-like modes appea
~as they did in the case of randomd V!, favoring the 2p
periodicity of the electrostatic potential so that along t
length of juxtaposition, there are regions of greater ‘‘co
mensurability’’ of the resulting phase angle. But the accum
lation of mismatch is much faster now and thus must
relaxed by a larger number of solitons.

FIG. 13. The phase angle~a! and the recognition energy~b! in
the Frenkel-Konotorova limit. The dotted line corresponds to
tremely soft molecules,C51.0310220 ergs cm, and the dashe
line to perfectly rigid moleculesC5`. For an intermediate value
C51.0310219 ergs cm~the solid curve!, solitonlike kinks emerge
in the phase angle demonstrating the interplay between the tors
forces and the 2p periodic electrostatic potential. The electrosta
parameter used here wasa1516.031028 ergs/cm. In these calcu
lations the phase angle was fixed to zero at the left side.
e

.

A.

04190
-
-
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This effect translates into the peculiar curve of the rec
nition energy as a function of juxtaposition length, or t
length of homology, Fig. 13~b!. For the case of rigid du-
plexes, this curve is very different than for randomd V ~Fig.
2 of Ref. @10#!. For the intermediate case, the plateau str
ture seen in the recognition energy of the rigid case is p
tially relaxed. As the molecules become even softer, the
ognition energy becomes linear in the juxtaposition lengt

Similar effects in the phase angle are observed when
second cosine, the ‘‘frustration,’’ term is included~Fig. 14!.
Going beyond the standard Frenkel-Kontorova limit, the
clusion of frustration leads to distortions of the 2p kinks
depending on the relative strength of the frustration term
the first cosine term. As in our model whered V is random,
this distortion from the usual 2p kink-soliton modes appear
simply as smaller kinks between the1/2 optimal angles.
The locations of greater commensurability, where the ph
angle curve is the flattest, are now centered about these
timal angles.

-

nal

FIG. 14. The effect of the frustration of the interaction potent
in the Frenkel-Kontorova limit. Adding the frustration term resu
in the solid curve for the phase angle. The 2p soliton kink ~the
dashed curve! of Fig. 13~a! is also shown here for reference. A
shown in the inset, the flatter regions are now centered about
1/2 optimal angles of Eq.~4! ~shown as the horizontal dashed fl
lines! for duplexes within the region of frustration. The paramete
for the frustrated phase angle solution areC50.3310219 ergs cm,
a1516.031028 ergs/cm, and a2510.031028 ergs/cm. The
boundary condition is the same as in Fig. 13.
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